Artigos publicados em revistas indexadas na Pubmed/Medline
Permanent URI for this collection
Browse
Browsing Artigos publicados em revistas indexadas na Pubmed/Medline by Subject "amino acids"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled TrialPublication . Daly, Anne; Evans, Sharon; Chahal, Satnam; Santra, Saikat; Pinto, Alex; Gingell, Cerys; Rocha, Júlio César; van Spronsen, Francjan; Jackson, Richard; MacDonald, AnitaIntroduction: In phenylketonuria (PKU), evidence suggests that casein glycomacropeptide supplemented with rate-limiting amino acids (CGMP-AA) is associated with better protein utilisation and less blood phenylalanine (Phe) variability. Aim: To study the impact of CGMP-AA on blood Phe variability using 3 different dietary regimens in children with PKU. Methods: This was a 6-week randomised controlled cross-over study comparing CGMP-AA vs. Phe-free l-amino acids (l-AA) assessing blood Phe and tyrosine (Tyr) variability over 24 h in 19 children (7 boys) with PKU, with a median age of 10 years (6⁻16). Subjects were randomised to 3 dietary regimens: (1) R1, CGMP-AA and usual dietary Phe (CGMP + Phe); (2) R2, CGMP-AA - Phe content of CGMP-AA from usual diet (CGMP - Phe); and (3) R3, l-AA and usual dietary Phe. Each regimen was administered for 14 days. Over the last 48 h on days 13 and 14, blood spots were collected every 4 h at 08 h, 12 h, 16 h, 20 h, 24 h, and 04 h. Isocaloric intake and the same meal plan and protein substitute dosage at standardised times were maintained when blood spots were collected. Results: Eighteen children completed the study. Median Phe concentrations over 24 h for each group were (range) R1, 290 (30⁻580), R2, 220 (10⁻670), R3, 165 (10⁻640) μmol/L. R1 vs. R2 and R1 vs. R3 p < 0.0001; R2 vs. R3 p = 0.0009. There was a significant difference in median Phe at each time point between R1 vs. R2, p = 0.0027 and R1 vs. R3, p < 0.0001, but not between any time points for R2 vs. R3. Tyr was significantly higher in both R1 and R2 [70 (20⁻240 μmol/L] compared to R3 [60 (10⁻200) μmol/L]. In children < 12 years, blood Phe remained in the target range (120⁻360 μmol/L), over 24 h, for 75% of the time in R1, 72% in R2 and 64% in R3; for children aged ≥ 12 years, blood Phe was in target range (120⁻600 μmol/L) in R1 and R2 for 100% of the time, but 64% in R3. Conclusions: The residual Phe in CGMP-AA increased blood Phe concentration in children. CGMP-AA appears to give less blood Phe variability compared to l-AA, but this effect may be masked by the increased blood Phe concentrations associated with its Phe contribution. Reducing dietary Phe intake to compensate for CGMP-AA Phe content may help.
- The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-AnalysisPublication . Pena, M.; Pinto, A.; Daly, A.; MacDonald, A.; Azevedo, L.; Rocha, J.; Borges, N.In phenylketonuria (PKU), synthetic protein derived from L-amino acids (AAs) is essential in a low-phenylalanine (Phe) diet. Glycomacropeptide (GMP), an intact protein, is very low in Phe in its native form. It has been modified and adapted for PKU to provide an alternative protein source through supplementation with rate-limiting amino acids (GMP-AAs), although it still contains residual Phe. This review aims to systematically evaluate published intervention studies on the use of GMP-AAs in PKU by considering its impact on blood Phe control (primary aim) and changes in tyrosine control, nutritional biomarkers, and patient acceptability or palatability (secondary aims). Four electronic databases were searched for articles published from 2007 to June 2018. Of the 274 studies identified, only eight were included. Bias risk was assessed and a quality appraisal of the body of evidence was completed. A meta-analysis was performed with two studies with adequate comparable methodology which showed no differences between GMP-AAs and AAs for any of the interventions analysed. This work underlines the scarcity and nature of studies with GMP-AAs interventions. All were short-term with small sample sizes. There is a need for better-designed studies to provide the best evidence-based recommendations.